
The analytical solutions obtained in the manner described here make it possible to ana- 
lyze the entire multiplicity of frontal regimes in the multicomponent (n e 3) dynamics of 
adsorption (C0m > Cm ~ and desorption (C0m < Cm ~ for various values of the concentration 

C0m , Cm ~ (i ~ m ~ n). 
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A SET OF STEADY-STATE SOLUTIONS OF THE EVOLUTION EQUATION 

FOR PERTURBATIONS IN ACTIVE-DISSIPATIVE MEDIA 

O. Yu. Tsvelodub UDC 532.51 

Steady-state periodic solutions have been calculated numerically. It is demonstrated 
that an even set of such solutions comes about as a consequence of a successive cascade of 

bifurcations. 

In recent times, researchers into the wave processes in nonconservative media have ex- 
pressed great interest in an equation of the form 

H t +4HH x+H~+Hx~=O. (i) 

This interest is generated by the fact that in terms of form it is one of the simplest non- 
linear equations which could possibly be imagined, so that with its appearance in the simulation 
of the nonlinear behavior of perturbations for a rather large class of active-dissipative 
media it functions for the latter in as extensive a role as the well-known KdV equation for 

conservative media. 

Thus, in the description of the waves at the surface of a liquid film flowing freely 
down an inclined plane, such an equation has been derived in [i, 2], for the counterflow 
motion of a film and a gas we find the derivation of such an equation in [3], and for the 
perturbations at the boundaries separating two viscous liquids in a horizontal channel, the 
derivation of the equation is to be found in [4]. 

Linear stability analysis demonstrated that the trivial solution H = 0 of Eq. (i) is 
unstable relative to perturbations of the form exp [i~(x - ct)] with wave numbers ~ < 1 (per- 
turbations with ~ > 1 are attenuated). The growth of such perturbations over time can be 
curtailed through the action of nonlinear effects, as a result of which steady-state non- 
linear regimes are formed. 
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It follows from linear stability theory that the periodic solution of infinitely small 
amplitude branches from the trivial solution of Eq. (i) when a = i. In its vicinity, the 
solution of small but finite amplitude can be achieved analytically in the form of a series 
over the small parameter, which is frequently represented by the amplitude itself. It is 
extended into the region of linear instability (a < i), i.e., a soft type of branching. 

For the steady-state traveling wave H(~) (~ = x - ct) Eq. (i) is written in the form 

--cH~ + 4HH~ + H~ + H ~  = O. (2)  

In finding the periodic solutions of Eq. (2) with a wavelength ~ = 2~/a, in light of 
the fact that it is invariant relative to the transformations 

H - + - - H , ~ - + - - ~ , c - + - - c , H - - + H  + const, c - + c  + 4 const, (3)  
h 

we will limit ourselves to an examination only of those for which c ~ 0, ~Hd~ = 0. Thus, 
0 

we arrive at the boundary-value problem in which the eigenvalues are the phase velocity c 
of the wave, and where the parameter is the wave number a. 

The periodic solutions of Eq. (2) with noticeable amplitude are found numerically. For 
this, they are presented in the form of a Fourier series 

H =  ~ Hnexp[itzn~l. (4) 

Since H is a real function, then H_ n = Hn (the bar indicates the complex conjugacy operation). 
Leaving the first N harmonics in Eq. (4), we will substitute it into (2). Having equated 
the coefficients for identical exponents to zero, we obtain a system of N complex equations 
for the real unknown c and for N complex H l .... , HN: 

(-- i(zcn -- ~2n2 + o~an 4) Hn + 2ian 
N 

H~H~_~= O, n =  1 . . . . .  N. (5)  

In view of the invariance of Eq. (2) relative to the displacement of the coordinate 

-+ ~ + const ( 6 )  

the origin can be set so that, for example, 

Re(H~) = 0. (7)  

With consideration of (7), system (5) is defined. We made use of the Newton method 
in the numerical solution of this system. In concluding series (4) we chose the number of 
harmonics so as to fulfill the relationship IHNI /sup ]Hn] s i0 -s For this, the number N 
in the calculations had to be changed in dependence on ~ in limits from i0 to 40. 

The basic difficulty in the solution of Eq. (2) by this method involves the specifica- 
tion of the initial approximation, sufficiently close to the solution. For the first set 
of solutions, branching from the trivial with a = i, we used the analytical solution. Move- 
ment along the parameter ~ is achieved in continuous fashion, i.e., the wave-number interval 
is chosen so that in using the initial approximation of the earlier-found solution it will 
enter the region of convergence. 

It has been determined in [5] that the first set of solutions can be continuously ex- 
tended in the direction of smaller wave numbers to values of ~, = 0.4979. At this point each 
odd harmonic of series (4) is equated to zero. As a result, we have a solution with a wave 
number ~ = 2~, = 0.9958, and here it develops that it coincides with the earlier-derived ~. 
Thus, this set of solutions closes on itself. Let us note that for all a out of the region 
of existence of solutions there exists for this family of solutions a phase velocity c = 
0. It follows from (3) that such solutions are antisymmetric. In the present study we will 
limit ourselves to the examination of those solutions for which c = 0. With this purpose 
in mind, we will use a regular procedure to undertake bifurcational analysis of branching 
from the first set of periodic steady-state solutions of Eq. (i). We demonstrate how an 
even set of such solutions appears. A portion of the set has been found in [6, 7]. Let us 
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in choosing the coordinate origin for g so as to satisfy (7), make the real parts of all of the 
harmonics in these solutions equal to zero. The procedure for the solution of the 
problem is covered in detail in [8], and we will therefore cover it here only in brief. 

Let H0($) be a periodic solution of Eq. (2) with the wave number a. To investigate 
its stability with regard to infinitely small perturbations, we will substitute H = H0($) + 
h($, t) into (I) and we will linearize it with respect to h($, t). We will then have a 
linear equation for h with periodic coefficients for $ of the same period as H 0. When we 
take into consideration that the variable t is not included here explicitly, and in accor- 
dance with the Floquet theorem dealing with the solutions of linear equations with periodic 
coefficients, the solution of this equation, limited for all $, is presentable in the follow- 
ing form [i]: 

h = exp [ - - ? t  ~- i~Q~]~($) -~ c . c . ,  ( 8 )  

where ~ is a periodic function of the same period as H0(~); Q is a real parameter. After 
simple transformations we obtain [i] 

A ~  + B~ '  -~ (1 - -  6~2@~)~ ' '  + 4 i~@~" '  q- +~v = W ( 9 )  

(A = 4H o'  + 4iaQH o - ~2Q2 + ~ . Q .  _ i a Q c ,  B = 4H o + 2 i aQ  - 4 i a 3Q  3 - c .  w i t h  t h e  p r i m e  d e n o t i n g  
differentiation with respect to $). 

Thus, the study of the stability of periodic steady-state solutions for Eq. (i) reduces 
to a study (with various values of Q) of the spectrum of eigenvalues of 7 for which (9) ex- 
hibits a periodic solution of the same period as H 0. The solution is stable if for any Q 
for all 7 Re (7) ~ 0. It becomes clear from (8) that we can restrict ourselves to an examina- 
tion of Q at any individual interval, for example, at [-0.5 to 0.5]. Carrying out the com- 
plex conjugacy operation in (9), it is easy to prove that it is enough to examine the solu- 
tion of (9) for the case in which 0 ~ Q ~ 0.5. 

Boundary-value problem (9) was solved numerically. For this purpose, subjecting (9) 
to Fourier transformation, we obtain an infinite system of linear algebraic uniform equations 
for ~. Equating to zero all ~n with n e N, we come to the final approximation 

[--f=c(O + ~ - -  ~(@ + n) z + ~(@ + n)4]~ + 4i~(q + n)XH~,~_m = W,~. 

It follows from (8) that if at some point (a, Q) the real portion of any eigenvalue 
vanishes, then from the original a new wave regime branches out. With Im(u = 0 it is pos- 
sible to have the generation of nonsteady regimes. New steady-state solutions arise from 
the solution of H 0 if 

~(~, Q) = 0. ( 1 0 )  

With Q irrational, a double-period regime is generated. If Q = p/r is a rational number, 
a regime periodic with respect to ~ is formed with a new wave number ane w = a/r. Expression 
(8) is used to find new solutions for Eq. (2) for wave numbers from the vicinity of ane w as 
the initial approximation. The function h in expression (8) is made proportional to the 
eigenfunction 9 satisfying Eq. (9) with the eigenvalue of ~ from (i0). The calculations 
show that the continuous motion in the vicinity of these points is most conveniently achieved 
through utilization of any of the harmonics as the varying parameter. Subsequently, by chang- 
ing to the parameter a, we also find a solution for a, distant from the points of origination 
for this set of ane w . 

Some of the results from our study of the stability of the first set of solutions can 
be seen in Fig. i, taken from [8, 9]. The cross-hatched area in the (a, Q) plane shows the 
region of stability. At its lower boundary, only the real portion of one of the eigenvalues 
passes through zero. The corresponding nonsteady regimes are generated from this line, i.e., 
we are dealing here with a bifurcation of the Landau-Hopf type. We can see that in agreement 
with the results from [i] the regimes with wave numbers belonging to the interval (0.837- 
0.778) are stable with respect to all infinitely small plane perturbations. On the curves 
1-4 for any of the eigenvalues we find satisfaction of relationship (i0). Subsequently, 
when speaking of new solutions branching away from these curves, we will refer to these as 
generating curves. With the aid of the latter we can easily find the wave numbers ane w with 
which new steady-state solutions are generated. The calculations demonstrate that these 
solutions are intricately interlaced with each other. 
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Figure 2 provides a demonstration of some of the interrelated transitions of the new 
solutions from one to the other, and it shows the amplitude of the first harmonic Im(H i) 
as a function of ~. Since for Eq. (2) Eq. (3) is valid, it becomes clear that all of the 
curves in Figs. 2 and 3 have their own mirror images relative to the Im (H i ) = 0 axis, and 
these reflections correspond to the same solution, shifted through a half period (these latter 
are not shown, so as not to make the figures overly cumbersome). 

In view of (6), all of the solutions can be taken from Im (H i ) e 0, but the representa- 
tion employed here allows us most clearly to see how the solutions make the transition from 
one to the other. It is precisely the point at which Im (H i ) = 0 in Figs. 2 and 3, with 
the exception of those cases stipulated, that serve as the points of generation for new solu- 
tions. If these points are associated with the branching from Q = 1/2, then a new solution 
is generated at these points (see, for example, points a and b, Fig. 2), and if this occurs 
from Q = P/r, r e 3, then two new solutions are generated. 

Curve I in Fig. 2 demonstrates how the first set disappears, closing on that set gener- 
ated from the first maximum possible new wave number, i.e., the point ~ (~a = 0.4979). In- 
deed, at this point we have a solution which branches away from curve 1 (see Fig. i~ with 
Q = 1/2, ~ = 0.9958. In the following, in describing new sets of solutions, generated di- 
rectly from the first set as per curves 1-4, speaking of the corresponding generating curve, 
we will not stress each time that we are dealing with the curves in Fig. I. 

Curve II (Fig. 2) shows that the new sets of solutions can make the transition from 
one to the other. Its boundary point b is connected to the branch from curve 2 with Q = 1/2. 
Moving continuously along this solution, we pass successively through the points at which 
new sets of solutions are generated, these associated with the branching from curve i with 
Q = i/3, 1/4, 1/5, 1/6, 1/7, and 1/8 (points c, d, e, f, g, and h). On the basis of these 
results there arises the temptation to reveal that the new solutions, bifurcating from curve 
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1 with Q = I/r, with a reduction in ~, change to a solution which branches from this same curve 
with Q = i/(r + i). 

A similar assertion is encountered in [6]. There, utilizing the general theory of the 
branching of solutions for nonlinear equations, we find the actual study of certain bifurca- 
tions from curves 1 and 2 with Q = i/r and semianalytically the branching points a, b, c, 
and d have been determined (including j; see Fig. 3). The wave numbers ~a = 0.4979, ~b = 
0.4352, ~c = 0.3323, ~d = 0.2494, ~f = 0.2923 obtained in [6] are sufficiently close to those 
found with our method: ~a = 0.4979, ~b = 0.4211, ~c = 0.3323, ~d = 0.2494, ~4 = 0.2803. 
The development of the solutions was traced in [6] to = = 0.25 and on the basis of calcula- 
tions carried out the conclusion was drawn that the solution for Eq. (2) with the period 
2~r, bifurcating from the solution of the first set with period 2~, makes the transition 
to a solution with the period 2~(r + i). However, our studies of branching from curves 2-4 
show that this assertion does not represent the general situation. 

Thus, in the branching from curve 2 with Q = 1/3 one of the solutions is continuous mono- 
tonically along ~ all the way to the minimum values of the wave numbers (C~nin = 0.I). The 
second solution branches in the direction of large ~, and then quickly turns around and merges 
with the solution continued by curve 4 with Q = 1/2. These three sets are shown in Fig. 
3 by line I (the corresponding wave profiles can be found in Fig. 4). Here, and in Figs. 
4 and 5 the numbers on the profiles are uniquely associated with the numbered points on the 
corresponding curves in Fig. 3. 

Let us note that at the instant of generation the wave numbers of the sets generated 
by curve 1 with Q = 1/4 and curve 4 with Q = 1/2 are very close to each other: ~d = 0.2494 
and ~k = 0.2505, respectively. Nevertheless, this method of analyzing the bifurcations dis- 
tinguishes between them completely. 

The set of solutions arising from curve 2 with Q = 1/4 evolved with a change in ~, 
similar to the sets of solutions which are generated from this same curve with Q = 1/3. In- 
deed, one of these is extended from the point of generation of these sets, i.e., ~s = 0.2099, 
in the direction of smaller ~ and exists all the way to ~min" The second set branches in 
the direction of larger ~, then turns into the region of smaller ~ and can be extended to 
~m = 0.1992. As demonstrated by analysis, this is the point of origination for two new sets 
from curve 1 with Q = 2/5. Thus we again have the merging of two different sets of solutions. 

The uniqueness of the point ~m in comparison with similar points considered above lies 
in the fact that in accordance with (8) in its vicinity it is the second harmonic Im (H 2) 
that is decisive, rather than the first harmonic, as in the case of branching with Q = i/r. 

The second set of solutions arising at the point ~m also continues into the region of 
small ~, at least to ~min- In the Jim (HI), =] plane, this solution initially enters the 
region of large ~, intersects the axis of abscissas at the point ~+ = 0.211, and then departs 
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monotonically into the region of small ~. Unlike all of the other points lying at the inter- 
section of the curves (see Figs. 2 and 3) with this axis, point ~+ is not connected to the 
generation of any new solutions. At this point only the single harmonic Im (H l) vanishes. 
In particular, the imaginary part of the second harmonic Im (H 2) on passage of this point 
in the indicated direction monotonically increases in absolute magnitude. Line II in Fig. 
3 represents the set of solutions generated at the points ~s and ~m- 

For all of the sets of periodic solutions of Eq. (2) that we have examined here, the 
values of the phase velocity satisfy c = 0. It can easily be demonstrated that as ~ + 0 
they cannot become soliton solutions. Therefore, these sets either exist in the finite in- 
terval of wave numbers, closing on each other, or they are extended to all small ~. With 
a reduction in ~ the wave period shows an ever-increasing number of local maxima and minima. 

We can see from the cited examples of branching from curves 1-4 in Fig. 1 how with a 
reduction in ~ increasingly new solutions arise. In this case, the distances between the 
points of generation for new regimes are reduced and at the limit ~ ~ 0 we have an even set 
of solutions. In turn, studying the stability of these solutions, on the (~, Q) plane we 
can obtain new generating curves (i0), analogous to curves 1-4 in Fig. i. It is clear that 
in principle this procedure can be carried out an unlimited number of times. 

As an illustration of the above, Fig. 5 shows a set of solutions which arises as a re- 
sult of such "secondary" branching. This regime of branching from the set of solutions, 
shown partially in Fig. 3 by curve I, lies above the axis of abscissas. Let us remember 
that it arises in the branching from curve 4 with Q = 1/2. The branching of the new regime 
occurs from the point ~ = 0.2602, also with Q = 1/2. The corresponding amplitude of the 
first harmonic is shown by line III in Fig. 3. 

The author would like to express his gratitude to Yu. Ya. Trifonov for his calculations 
and discussion of the results. 
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